Ability of Anthropometric Measurements to Predict Metabolic Health among Patients in Alberta: A Cross-sectional Study in Primary Care

Publication: Canadian Journal of Dietetic Practice and Research
8 March 2023

Abstract

Purpose: This study compared anthropometric and body fat percent (BF%) equations in relation to measures of metabolic health.
Methods: BF% calculations (Bergman, Fels, and Woolcott) and anthropometric measurements were used to determine obesity among a sample of patients attending primary care in Alberta, Canada. Anthropometric variables included body mass index (BMI), waist circumference, waist:hip ratio, waist:height ratio, and calculated BF%. Metabolic Z-score was computed as the average of the individual Z-scores of triglycerides, total cholesterol, and fasting glucose and the number of standard deviations from the sample mean.
Results: Five hundred and fourteen individuals were included (41.2% male, age: 53 ± 16y, BMI: 27.4 ± 5.7 kg/m2). BMI ≥ 30 kg/m2 detected the smallest number of participants (n = 137) as having obesity, while Woolcott BF% equation categorized the largest number of participants as having obesity (n = 369). No anthropometric or BF% calculation predicted metabolic Z-score in males (all p ≥ 0.05). In females, age-adjusted waist:height ratio had the highest prediction power (R2 = 0.204, p < 0.001), followed by age-adjusted waist circumference (R2 = 0.200, p < 0.001) and age-adjusted BMI (R2 = 0.178, p < 0.001).
Conclusions: This study did not find evidence that BF% equations more strongly predicted metabolic Z-scores than other anthropometric values. In fact, all anthropometric and BF% variables were weakly related to metabolic health parameters, with apparent sex differences.

Résumé

Objectif : Cette étude a comparé les mesures anthropométriques et les équations du pourcentage de gras corporel (% GC) aux mesures de la santé métabolique.
Méthodes : Les calculs du % GC (Bergman, Fels et Woolcott) et les mesures anthropométriques ont été utilisés pour déterminer l’obésité au sein d’un échantillon de patients recevant des soins primaires en Alberta, au Canada. Les variables anthropométriques comprenaient l’indice de masse corporelle (IMC), le tour de taille, le rapport tour de taille/hanche, le rapport tour de taille/hauteur et le % GC calculé. L’écart réduit métabolique a été calculé en utilisant la moyenne des écarts réduits individuels pour les triglycérides, le cholestérol total et la glycémie à jeun, et le nombre d’écarts-types par rapport à la moyenne de l’échantillon.
Résultats : On a inclus 514 personnes (41,2 % d’hommes, âge : 53 ± 16 ans, IMC : 27,4 ± 5,7 kg/m2). Un IMC ≥ 30 kg/m2 a catégorisé le plus petit nombre de participants (n = 137) comme vivant avec l’obésité, tandis que l’équation % GC de Woolcott a catégorisé le plus grand nombre (n = 369). Ni les valeurs anthropométriques ni le % GC calculé n’ont permis de prédire l’écart réduit métabolique chez les hommes (p tous ≥ 0,05). Chez les femmes, le rapport tour de taille/hauteur ajusté pour l’âge avait la plus grande capacité de prédiction (R2 = 0,204, p < 0,001), suivi du tour de taille ajusté pour l’âge (R2 = 0,200, p < 0,001) et de l’IMC ajusté pour l’âge (R2 = 0,178, p < 0,001).
Conclusions : Cette étude n’a pas permis de démontrer que les équations de % GC prédisaient mieux les écarts réduits métaboliques que les autres valeurs anthropométriques. En fait, toutes les variables anthropométriques et de % GC étaient faiblement associées aux paramètres de santé métabolique, avec des différences apparentes selon le sexe.

Get full access to this article

View all available purchase options and get full access to this article.

Financial support: C. M. Prado is supported by the Campus Alberta Innovates Program in Nutrition, Food, and Health.
Conflicts of interest: The authors declare that they have no competing interests.

REFERENCES

1
Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity systematic review and meta-anlysis. Int J Obes. 2010;34(5):791–799.
2
Siervo M, Prado CM, Stephan BC, Lara J, Muscariello E, Nasti G, et al. Association of the body adiposity index (BAI) with metabolic risk factors in young and older overweight and obese women. Eat Weight Disord. 2014;19(3):397–402.
3
Ramírez-Vélez R, Correa-Bautista JE, González-Ruíz K, Vivas A, Triana-Reina HR, Martínez-Torres J, et al. Body Adiposity Index Performance in Estimating Body Fat Percentage in Colombian College Students: Findings from the FUPRECOL—Adults Study. Nutrients. 2017;9(1):40.
4
Morkem R, Barber D, Williamson T, and Patten SB. A Canadian Primary Care Sentinel Surveillance Network Study Evaluating Antidepressant Prescribing in Canada From 2006 to 2012. Can J Psychiatry. 2015;60(12):564–570.
5
Birtwhistle RV. Canadian Primary Care Sentinel Surveillance Network: A developing resource for family medicine and public health. Can Fam Physician. 2011;57(10):1219–1220.
6
Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A Better Index of Body Adiposity. Obesity. 2011;19(5):1083–1089.
7
Johnson W, Chumlea WC, Czerwinski SA, and Demerath EW. Concordance of the Recently Published Body Adiposity Index with Measured Body Fat Percent in European-American Adults. Obesity. 2012;20(4):900–903.
8
Woolcott OO and Bergman RN. Relative fat mass (RFM) as a new estimator of whole-body fat percentage — A cross-sectional study in American adult individuals. Sci Rep. 2018;8(1):10980.
9
Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Bailey KR, Collazo-Clavell ML, et al. Accuracy of Body Mass Index to Diagnose Obesity in the US Adult Population. Int J Obesity. 2008;32(6):959–966.
10
Grundy SM. Obesity, Syndrome MetabolicDisease Cardiovascular. J Clin Endocrinol Metab. 2004;89(6):2595–2600.
11
Silva MI, Vale BS, Lemos CC, Torres MR, and Bregman R. Body adiposity index assess body fat with high accuracy in nondialyzed chronic kidney disease patients. Obesity. 2013;21(3):546–552.
12
Alvim R, de O, Mourao-Junior CA, de Oliveira CM, Krieger JE, Mill JG, Pereira AC. Body Mass Index, Waist Circumference, Body Adiposity Index, and Risk for Type 2 Diabetes in Two Populations in Brazil: General and Amerindian. PLoS ONE. 2014;9(6): e100223.
13
Freedman DS, Thornton JC, Pi-Sunyer FX, Heymsfield SB, Wang J, Pierson RN Jr., et al. The body adiposity index (hip circumference/height(1.5)) is not a more accurate measure of adiposity than is BMI, waist circumference, or hip circumference. Obesity. 2012;20(12):2438–2444.
14
Zeng Q, Dong S-Y, Sun X-N, Xie J, and Cui Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz J Med Biol. 2012;45(7):591–600.
15
Kuk JL, Saunders TJ, Davidson LE, and Ross R. Age-related changes in total and regional fat distribution. Ageing Res Rev. 2009;8(4):339–348.
16
Sharma AM and Kushner RF. A proposed clinical staging system for obesity. Int J Obes. 2009;33(3):289–295.
17
Miller Wl, McDaniel RRJ, Crabtree BF, and Stange KC. Practice Jazz: Understanding Variation in Family Practices using Complexity Science. J Fam Pract. 2001. 50(10):872.

Supplementary Material

File (cjdpr-2022-039suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Dietetic Practice and Research
Canadian Journal of Dietetic Practice and Research
Volume 84Number 3September 2023
Pages: 167 - 170
Editor: Naomi Cahill

History

Version of record online: 8 March 2023

Key Words

  1. Body fat (BF)
  2. CPCSSN
  3. metabolic Z-score
  4. body mass index (BMI)
  5. cross-sectional
  6. prediction
  7. metabolic health

Mots-clés

  1. gras corporel (GC)
  2. RCSSSP
  3. écart réduit métabolique
  4. indice de masse corporelle (IMC)
  5. transversal
  6. prédiction
  7. santé métabolique

Authors

Affiliations

Sunita Ghosh Ph.D. P.Stat.
Alberta Health Services-Cancer Care Alberta, Edmonton, AB, Canada
Division of Medical Oncology – University of Alberta, Edmonton, AB, Canada
Department of Mathematical and Statistical Sciences – University of Alberta, Edmonton, AB, Canada
Sarah A. Purcell Ph.D*
Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
Ken Martin M.Sc
Canadian Primary Care Sentinel Surveillance Network (CPCSSN), Kingston, ON, Canada
Isac Lima Ph.D
Institute for Clinical Evaluative Science (IC/ES) uOttawa, Ottawa Hospital Research Institute, Ottawa, ON
Carla M. Prado Ph.D. R.D
Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
Institute for Clinical Evaluative Science (IC/ES) uOttawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada

Notes

*
Co-first authors

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Primary Care: An Ideal Setting for the Early Identification and Management of Nutrition-Related Issues

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Dietetic Practice and Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media