Plant-based Dietary Index Scores are Not Associated with Body Composition in Young Children

Publication: Canadian Journal of Dietetic Practice and Research
15 April 2025

Abstract

Purpose: Plant-based diets have become increasingly popular and, in adults, have been inversely associated with body fat outcomes. We examined associations between overall, healthful, and less-healthful plant-based dietary index (PDI) scores and BMI z-score, waist circumference, waist-to-height ratio, % fat mass (%FM), and fat mass index in young children, aged 1.5–6 years.
Methods: Baseline data from the Guelph Family Health Study (287 children and 211 families) were used in this cross-sectional study. PDI scores were calculated from a single dietary recall using the Automated Self-Administered 24-hour Dietary Assessment Tool – Canada. Body composition outcomes were measured by trained research staff, with FM assessed using bioelectrical impedance analysis. Associations between PDI scores and body composition outcomes were estimated using generalized estimating equations applied to linear regression models. Covariates included energy intake, physical activity, age, sex, ethnicity, household income, and gestational age.
Results: After adjusting for covariates, there were no significant associations between overall, healthful, and less-healthful PDI scores and body composition outcomes.
Conclusions: Proportions of plant- and animal-based food consumption were not cross-sectionally related to body composition in this sample of young children. Further research on longitudinal associations between PDI scores and health outcomes in young children is warranted.

Résumé

Objectif. Les régimes alimentaires végétaux sont de plus en plus populaires et, chez les adultes, ils ont été inversement associés à la quantité de tissus adipeux. Nous avons examiné les associations entre les scores d’indice de l’alimentation végétale (IAV) globaux, sains et moins sains, et l’écart réduit de l’IMC, le tour de taille, le rapport tour de taille:stature, le % de masse grasse (%MG) et l’indice de masse grasse chez de jeunes enfants de 1,5 à 6 ans.
Méthodes. Les données de référence de la Guelph Family Health Study (287 enfants et 211 familles) ont été utilisées dans cette étude transversale. Les scores d’IAV ont été calculés à partir d’un seul rappel alimentaire effectué à l’aide de la version canadienne de l’Automated Self-Administered 24-hour Dietary Assessment Tool. Les résultats relatifs à la composition corporelle ont été mesurés par du personnel de recherche formé, et la MG a été évaluée à l’aide de l’analyse de l’impédance bioélectrique. Les associations entre les scores d’IAV et les résultats relatifs à la composition corporelle ont été estimées à l’aide d’équations d’estimation généralisées appliquées à des modèles de régression linéaire. Les covariables comprenaient l’apport énergétique, l’activité physique, l’âge, le sexe, l’origine ethnique, le revenu du ménage et l’âge gestationnel.
Résultats. Après ajustement des covariables, il n’y avait pas d’associations significatives entre les scores d’IAV globaux, sains et moins sains, et les résultats relatifs à la composition corporelle.
Conclusions. Les proportions d’aliments d’origine végétale et animale consommés n’étaient pas liées transversalement à la composition corporelle dans cet échantillon de jeunes enfants. D’autres recherches sur les associations longitudinales entre les scores d’IAV et les résultats de santé chez les jeunes enfants sont justifiées.

Get full access to this article

View all available purchase options and get full access to this article.

Financial support: Canadian Institutes of Health Research
Conflicts of interest: The authors declare that they have no competing interests.

REFERENCES

1
Rao DP, Kropac E, Do MT, Roberts KC, and Jayaraman GC. Childhood overweight and obesity trends in Canada. Health Promot Chronic Dis Prev Can. 2016;36(9):194–8.
2
World Health Organization. Noncommunicable diseases: childhood overweight and obesity; 2020 [cited 2023 Mar 11]. Available from: https://www.who.int/news-room/questions-and-answers/item/noncommunicable-diseases-childhood-overweight-and-obesity
3
Tsiros MD, Olds T, Buckley JD, Grimshaw P, Brennan L, Walkley J, et al. Health-related quality of life in obese children and adolescents. Int J Obes. 2009;33:387–400.
4
Singh AS, Mulder C, Twisk JWR, Van Mechelen W, and Chinapaw MJM. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.
5
Juonala M, Magnussen G, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876–85.
6
Weihrauch-Blüher S, Schwarz P, and Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019;92:147–52.
7
Reilly JJ and Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes. 2011;35:891–8.
8
Bye ZL, Keshavarz P, Lane GL, and Vatanparast H. What role do plant-based diets play in supporting the optimal health and well-being of Canadians? a scoping review. Adv Nutr. 2021;12:2132–46.
9
Storz MA. What makes a plant-based diet? a review of current concepts and proposal for a standardized plant-based dietary intervention checklist. Eur J Clin Nutr. 2022;76:789–800.
10
Benatar JR and Stewart RAH. Cardiometabolic risk factors in vegans; a meta-analysis of observational studies. PLoS One. 2018;13(12).
11
Tong TYN, Key TJ, Sobiecki JG, and Bradbury KE. Anthropometric and physiologic characteristics in white and British Indian vegetarians and nonvegetarians in the UK Biobank. Am J Clin Nutr. 2018;107:909–20.
12
Spencer EA, Appleby PN, Davey GK, and Key TJ. Diet and body mass index in 38 000 EPIC-Oxford meat-eaters, fish-eaters, vegetarians and vegans. Int J Obes. 2003;27(6):728–34.
13
Orlich MJ and Fraser GE. Vegetarian diets in the Adventist Health Study 2: a review of initial published findings. Am J Clin Nutr. 2014;100(1):353S–8S.
14
Desmond MA, Sobiecki JG, Jaworski M, Płudowski P, Antoniewicz J, Shirley MK, et al. Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr. 2021;113:1565–77. 33740036.
15
Elliott LJ, Keown-Stoneman CDG, Birken CS, Jenkins DJA, Borkhoff CM, and Maguire JL. Vegetarian diet, growth, and nutrition in early childhood: a longitudinal cohort study. Pediatrics. 2022;149(6):e2021052598.
16
Weder S, Hoffmann M, Becker K, Alexy U, and Keller M. Energy, macronutrient intake, and anthropometrics of vegetarian, vegan, and omnivorous children (1-3 years) in Germany (VeChi diet study). Nutrients. 2019;11(4):832.
17
Jarvis SE, Nguyen M, and Malik VS. Association between adherence to plant-based dietary patterns and obesity risk: a systematic review of prospective cohort studies. Appl Physiol Nutr Metab. 2022;47(12):1115–33.
18
Craig WJ, Mangels AR, Fresán U, Marsh K, Miles FL, Saunders AV, et al. The safe and effective use of plant-based diets with guidelines for health professionals. Nutrients. 2021;13(11):4144.
19
Gómez-Donoso C, Martínez-González MÁ, Martínez JA, Gea A, Sanz-Serrano J, Perez-Cueto FJA, et al. A provegetarian food pattern emphasizing preference for healthy plant-derived foods reduces the risk of overweight/obesity in the SUN cohort. Nutrients. 2019;11(7):1553.
20
Satija A, Malik V, Rimm EB, Sacks F, Willett W, and Hu FB. Changes in intake of plant-based diets and weight change: results from 3 prospective cohort studies. Am J Clin Nutr. 2019;110(3):574–82.
21
Shahavandi M, Djafari F, Shahinfar H, Davarzani S, Babaei N, Ebaditabar M, et al. The association of plant-based dietary patterns with visceral adiposity, lipid accumulation product, and triglyceride-glucose index in Iranian adults. Complement Ther Med. 2020;53:102531.
22
Wallace A, Kirkpatrick SI, Darlington G, and Haines J. Accuracy of parental reporting of preschoolers’ dietary intake using an online self-administered 24-h recall. Nutrients. 2018;10(8):987.
23
Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13:e1002039.
24
Acosta PFC, Landon OA, Ribau ZJ, Haines J, Ma DWL, and Duncan AM. Plant-based dietary indices in relation to nutrient and food group intakes in preschool-aged children. Nutrients. 2023;15:4617.
25
Patry-Parisien J, Shields M, Bryan S. Comparison of waist circumference using the World Health Organization and National Institutes of Health protocols. Health Rep. 2012;23(3):53–60. 23061265
26
Kushner RF, Schoeller DA, Fjeld CR, and Danford L. Is the impedance index (ht2/R) significant in predicting total body water?. Am J Clin Nutr. 1992;56:835–9.
27
Fomon SJ, Haschke F, Ziegler EE, and Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35:1169–75.
28
Wells JC. A critique of the expression of paediatric body composition data. Arch Dis Child. 2001;85(1):67–72.
29
Braillon PM. Annual changes in bone mineral content and body composition during growth. Horm Res. 2003;60:284–90.
30
Martin CB, Stierman B, Yanovski JA, Hales CM, Sarafrazi N, and Ogden CL. Body fat differences among US youth aged 8–19 by race and Hispanic origin, 2011–2018. Pediatr Obes. 2022;17(7): e12898.
31
Bridger Staatz C, Kelly Y, Lacey RE, Blodgett JM, George A, Arnot M, et al. Socioeconomic position and body composition in childhood in high- and middle-income countries: a systematic review and narrative synthesis. Int J Obes. 2021;45:2316–34.
32
Rennie KL, Livingstone MBE, Wells JCK, McGloin A, Coward WA, Prentice AM, et al. Association of physical activity with body-composition indexes in children aged 6-8 y at varied risk of obesity 1-3. Am J Clin Nutr. 2005;82:13–20.
33
Elliott SA, Truby H, Lee A, Harper C, Abbott RA, and Davies PSW. Associations of body mass index and waist circumference with: energy intake and percentage energy from macronutrients, in a cohort of Australian children. Nutr J. 2011;10:58.
34
Casirati A, Somaschini A, Perrone M, Vandoni G, Sebastiani F, Montagna E, et al. Preterm birth and metabolic implications on later life: a narrative review focused on body composition. Front Nutr. 2022;9:978271.
35
Health Canada. 2011 National household survey; 2011 [cited 2023 Mar 11]. Available from: https://www23.statcan.gc.ca/imdb-bmdi/instrument/5178_Q1_V1-eng.pdf
36
Breau B, Coyle-Asbil HJ, and Vallis LA. The use of accelerometers in young children: a methodological scoping review. J Hum Kinet. 2022;5(3):185–201.
37
Choi L, Liu Z, Matthews CE, and Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.
38
Sadeh AV, Sharkey KM, Carskadon MA, and Bradley EP. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 1994;17(3):201–7.
39
Tudor-Locke C, Barreira TV, Schuna JM, Mire EF, and Katzmarzyk PT. Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-period time separate from 24-h physical activity or sedentary behaviors. Appl Physiol Nutr Metab. 2014;39:53–7.
40
Trost SG, Fees BS, Haar SJ, Murray AD, and Crowe LK. Identification and validity of accelerometer cut-points for toddlers. Obesity. 2012;20(11):2317–9.
41
Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, and Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46(6):1216–26.
42
Zhou J, Zhang F, Qin X, Li P, Teng Y, Zhang S, et al. Age at adiposity rebound and the relevance for obesity: a systematic review and meta-analysis. Int J Obes. 2022;46(8):1413–24.
43
Nagy P, Kovacs E, Moreno LA, Veidebaum T, Tornaritis M, Kourides Y, et al. Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study. Int J Obes. 2014;38:S15–S25. 25219408.
44
De Onis M and Lobstein T. Defining obesity risk status in the general childhood population: which cut-offs should we use?. Int J Pediatr Obes. 2010;5(6):458–60.
45
Chen G, Su M, Chu X, Wei Y, Chen S, Zhou Y, et al. Plant-based diets and body composition in Chinese omnivorous children aged 6–9 years old: a cross-sectional study. Front Nutr. 2022;9:918944.
46
Orsso CE, Gonzalez MC, Maisch MJ, Haqq AM, and Prado CM. Using bioelectrical impedance analysis in children and adolescents: pressing issues. Eur J Clin Nutr. 2022;76(5):659–65.
47
National Research Council Canada. Plant-based protein market: global and Canadian market analysis; 2019 [cited 2023 Mar 25]. Available from: https://nrc.canada.ca/en/research-development/research-collaboration/programs/plant-based-protein-market-global-canadian-market-analysis
48
Health Canada. Canada’s food guide; 2019 [cited 2023 Mar 25]. Available from: https://food-guide.canada.ca/en/
49
World Health Organization. WHO guideline for complementary feeding of infants and young children 6-23 months of age; 2023 [cited 2024 Nov 11]. Available from: https://www.who.int/publications/i/item/9789240081864
50

Information & Authors

Information

Published In

cover image Canadian Journal of Dietetic Practice and Research
Canadian Journal of Dietetic Practice and Research
e-First
Pages: 1 - 7
Editor: Naomi Cahill

History

Version of record online: 15 April 2025

Key Words

  1. Plant-based dietary index
  2. body composition
  3. BMI z-score
  4. waist circumference
  5. waist-to-height ratio
  6. fat mass
  7. fat mass index
  8. children

Mots-clés

  1. Indice de l’alimentation végétale
  2. composition corporelle
  3. écart réduit de l’IMC
  4. tour de taille
  5. rapport tour de taille:stature
  6. masse grasse
  7. indice de masse grasse
  8. enfants

Authors

Affiliations

Hannah Leung BASc
Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, ON
Patricia F.C. Acosta MSc
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON
Olivia A. Landon MSc
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON
Zachary J. Ribau BSc
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON
Lori Ann Vallis PhD
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON
Gerarda Darlington PhD
Department of Mathematics and Statistics, University of Guelph, Guelph, ON
Alison M. Duncan PhD RD
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON
Jess Haines PhD RD
Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, ON
David W.L. MA PhD
Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON
Andrea C. Buchholz PhD RD
Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, ON
On Behalf of the Guelph Family Health Study

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Dietetic Practice and Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media