Development and Evaluation of the Dietary Pattern Calculator (DiPaC) for Personalized Assessment and Feedback

Publication: Canadian Journal of Dietetic Practice and Research
12 October 2023

Abstract

This study aimed to develop and validate a diet assessment screener – the Dietary Pattern Calculator (DiPaC). A scoping review identified currently available short diet quality assessment tools. Twenty-one articles covering 19 unique tools were included. The current tools mainly focused on individual nutrients or food groups or were developed for a specific population, and few ascertained overall dietary patterns. The 24-hour dietary recalls from the nationally representative Canadian Community Health Survey (CCHS)-Nutrition 2015 (n = 13,958) were used to derive and validate a personalized dietary pattern informed by the scoping review using weighted partial least squares. The dominant dietary pattern in CCHS-Nutrition 2015 was characterized by high consumption of fast foods, carbonated drinks, and salty snacks and low consumption of whole fruits, orange vegetables, other vegetables and juices, whole grains, dark green vegetables, legumes, and soy. The dietary pattern assessment was used to create and evaluate DiPaC following an agile and user-centred research and development approach. DiPaC, which demonstrated high validity and intermediate reliability (internal consistency = 0.47–0.51), is publicly available at https://www.projectbiglife.ca/. DiPaC can be used by the public, clinicians, and researchers for quick and robust assessment of diet quality, providing immediate feedback with the advantage of being easy to implement.

Résumé

Cette étude visait à élaborer et à valider un outil d’évaluation de l’alimentation, la Dietary Pattern Calculator [Calculatrice des habitudes alimentaires] (DiPaC). Un examen de la portée a permis d’identifier les outils d’évaluation de la qualité de l’alimentation courts actuellement disponibles. Vingt et un articles couvrant 19 outils uniques ont été inclus. Les outils actuels sont principalement axés sur des nutriments ou des groupes alimentaires individuels ou ont été créés pour une population particulière, et peu d’entre eux permettent de déterminer les modèles alimentaires globaux. Les rappels alimentaires de 24 heures de l’Enquête sur la santé dans les collectivités canadiennes (ESCC) - Nutrition de 2015 (n = 13,958), représentative à l’échelle nationale, ont été utilisés pour dériver et valider un modèle alimentaire personnalisé fondé sur l’examen de la portée à l’aide des moindres carrés partiels pondérés. Le modèle alimentaire dominant dans l’ESCC – Nutrition de 2015 était caractérisé par une consommation élevée de repas-minute, de boissons gazéifiées et de collations salées et par une faible consommation de fruits entiers, de légumes orange, d’autres légumes et jus, de grains entiers, de légumes vert foncé, de légumineuses et de soya. L’évaluation des modèles alimentaires a été utilisée pour créer et évaluer la DiPaC à l’aide d’une approche de recherche et développement agile et centrée sur l’utilisateur. La DiPaC, qui a démontré une validité élevée et une fiabilité intermédiaire (cohérence interne = 0,47–0,51), est accessible au public au https://www.projectbiglife.ca/. La DiPaC peut être utilisée par le public, les cliniciens et les chercheurs pour évaluer rapidement et avec précision la qualité de l’alimentation et obtenir des résultats immédiats. De plus, l’outil est facile à mettre en œuvre.

Get full access to this article

View all available purchase options and get full access to this article.

Funding statement: This work was funded through Canadian Institutes of Health Research (CIHR) Planning and Dissemination Grant 2017, and funds to the Canadian Research Data Centre Network from the Social Sciences and Humanities Research Council, CIHR, the Canadian Foundation for Innovation, and Statistics Canada. MJ was supported by a CIHR Banting Fellowship, and Canada Research Chair Program.
Conflict of interest: The authors declare that they have no competing interests.

REFERENCES

1
United States Department of Agriculture and United States Department of Health and Human Services. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. 2015 [cited 2021 Feb 03]; Available from: https://ods.od.nih.gov/pubs/2015_dgac_scientific_report.pdf.
2
Cespedes EM and Hu FB. Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr. 2015 May;101(5):899–900.
3
Dao MC, Subar AF, Warthon-Medina M, Cade JE, Burrows T, Golley RK, et al. Dietary assessment toolkits: an overview. Public Health Nutr. 2019;22(3):404–18.
4
Zazpe I, Sanchez-Tainta A, Estruch R, Lamuela-Raventos RM, Schroder H, Salas-Salvado J, et al. A large randomized individual and group intervention conducted by registered dietitians increased adherence to Mediterranean-type diets: the PREDIMED study. J Am Diet Assoc. 2008 Jul;108(7):1134–44.
5
Fakih El Khoury C, Karavetian M, Halfens RJG, Crutzen R, Khoja L, and Schols JMGA. The Effects of Dietary Mobile Apps on Nutritional Outcomes in Adults with Chronic Diseases: A Systematic Review and Meta-Analysis. J Acad Nutr Diet. 2019;119(4):626–51.
6
Steinberg D, Bennett GG, and Svetkey L. The DASH Diet, 20 Years Later. JAMA. 2017 Apr 18;317(15):1529–30.
7
Health Canada. Reference Guide to Understanding and Using the Data. 2015 Canadian Community Health Survey—Nutrition. 2017.
8
Ng AP, Jessri M, and L’Abbe MR. Using partial least squares to identify a dietary pattern associated with obesity in a nationally-representative sample of Canadian adults: Results from the Canadian Community Health Survey—Nutrition 2015. PLoS ONE.16(8):e0255415.
9
Jessri M, Wolfinger RD, Lou WY, and L’Abbe MR. Identification of dietary patterns associated with obesity in a nationally representative survey of Canadian adults: application of a priori, hybrid, and simplified dietary pattern techniques. Am J Clin Nutr. 2017 Mar;105(3):669–84.
10
World Health Organization. Diet, nutrition, and the prevention of chronic diseases. 2003 [cited 2021 Dec 01]; Available from: http://apps.who.int/iris/bitstream/handle/10665/42665/WHO_TRS_916.pdf;jsessionid=0A570D8F722714B634FE2E07BEA7AF14?sequence=1.
11
Johns DJ, Lindroos AK, Jebb SA, Sjostrom L, Carlsson LM, and Ambrosini GL. Dietary patterns, cardiometabolic risk factors, and the incidence of cardiovascular disease in severe obesity. Obesity (Silver Spring). 2015 May;23(5):1063–70.
12
Howarth NC, Saltzman E, and Roberts SB. Dietary fibre and weight regulation. Nutr Rev. 2001;59:129–39.
13
Ledikwe JH, Blanck HM, Khan LK, Serdula MK, Seymour JD, Tohill BC, et al. Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr. 2006;83:1362–8.
14
Field AE, Willett WC, Lissner L, and Colditz GA. Dietary Fat and Weight Gain Among Women in the Nurses’ Health Study. Obesity (Silver Spring). 2007;15:967–76.
15
Bureau of Nutritional Sciences. Food group codes and descriptions - Canadian community health survey (CCHS) 2.2 [cited 2021 Dec 01]; Available from: http://www23.statcan.gc.ca/imdb-bmdi/pub/document/5049_D23_T9_V1-eng.pdf.
16
Hunsberger M, O’Malley J, Block T, and Norris JC. Relative validation of Block Kids Food Screener for dietary assessment in children and adolescents. Matern Child Nutr. 2015 Apr;11(2):260–70.
17
Health Canada. Nutrient Value of Some Common Foods. 2008 [cited 2021 Dec 01]; Available from: https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/pdf/nutrition/fiche-nutri-data/nvscf-vnqau-eng.pdf
18
Katamay SW, Esslinger KA, Vigneault M, Johnston JL, Junkins BA, Robbins LG, et al.Eating Well with Canada’s Food Guide: Development of the Food Intake Pattern. Nutr Rev. 2007;65(4):155–66.
19
United States Department of Health and Human Services and United States Department of Agriculture. Dietary Guidelines for Americans 2015–2020. 8th ed. 2015 [cited 2021 Dec 01]; Available from: http://health.gov/dietaryguidelines/2015/guidelines/
20
Jessri M, Nishi SK, and L’Abbe MR. Assessing the nutritional quality of diets of Canadian children and adolescents using the 2014 Health Canada Surveillance Tool Tier System. BMC Public Health. 2016 May 10;16:381–94.
21
Jessri M, Nishi SK, and L’Abbe MR. Assessing the Nutritional Quality of Diets of Canadian Adults Using the 2014 Health Canada Surveillance Tool Tier System. Nutrients. 2015 Dec 12;7(12):10447–68.
22
Health Canada. The Classification of Foods in the Canadian Nutrient File According to Eating Well with Canada’s Food Guide. 2014 [cited 2021 Dec 01]; Available from: http://publications.gc.ca/collections/collection_2014/sc-hc/H164-158-1-2014-eng.pdf.
23
Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012 Jun;142(6):1009–18.
24
Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar AF, et al. A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc. 2006 Oct;106(10):1575–87.
25
National Cancer Institute. Usual Dietary Intakes: The NCI Method. Cited 17 May 2018. Available from: https://epi.grants.cancer.gov/diet/usualintakes/method.html.
26
Arcand J, Abdulaziz K, Bennett C, L’Abbe MR, and Manuel DG. Developing a Web-based dietary sodium screening tool for personalized assessment and feedback. Appl Physiol Nutr Metab. 2014 Mar;39(3):413–4.
27
United States Department of Health and Human Services and United States Department of Agriculture. Dietary Guidelines for Americans 2020-2025. 9th ed. 2020 [cited 06 June 2022]; Available from: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials.
28
Nishi SK, JESSRI M, L’Abbé M. Assessing the Dietary Habits of Canadians by Eating Location and Occasion: Findings from the Canadian Community Health Survey, Cycle 2.2. Nutrients. 2018 May 27;10(6). pii: E682.
29
Jessri M, Lou WY, and The L’Abbé MR. 2015 Dietary Guidelines for Americans is associated with a more nutrient-dense diet and a lower risk of obesity. Am J Clin Nutr. 2016;104(5):1378–92.
30
Hack S, JESSRI M, L’Abbé MR. Evaluating Diet Quality of Canadian Adults Using Health Canada’s Surveillance Tool Tier System: Findings from the 2015 Canadian Community Health Survey-Nutrition. Nutrients. 2020 Apr 16;12(4). pii: E1113.
31
Health Canada. Canada’s Dietary Guidelines for Health Professionals and Policy Makers. 2019.
32
Health Canada. Health Canada’s healthy eating strategy. 2019 [cited 2021 Dec 01]; Available from: https://www.canada.ca/en/services/health/campaigns/vision-healthy-canada/healthy-eating.html.
33
Matsunaga M, Hurwitz EL, and Li D. Development and Evaluation of a Dietary Approaches to Stop Hypertension Dietary Index with Calorie-Based Standards in Equivalent Units: A Cross-Sectional Study with 24-Hour Dietary Recalls from Adult Participants in the National Health and Nutrition Examination Survey 2007-2010. J Acad Nutr Diet. 2018 Jan;118(1):62–73 e4.
34
Cortina JM. What is Coefficient Alpha? An Examination of Theory and Applications. Am J Appl Psychol. 1993;78(1):98–104.
35
Wilson K, Bell C, Wilson L, and Witteman H. Agile research to complement agile development: a proposal for an mHealth research lifecycle. NPJ Digit Med. 2018;1:46–51.
36
Bonner C, Jansen J, Newell BR, Irwig L, Glasziou P, Doust J, et al. I don’t believe it, but I’d better do something about it: patient experiences of online heart age risk calculators. J Med Internet Res. 2014;16(5):e3190.
37
Healey G, Brough L, Murphy R, Hedderley D, Butts C, and Coad J. Validity and reproducibility of a habitual dietary fibre intake short food frequency questionnaire. Nutrients. 2016 Sep 10;8(9):558–64.
38
Mainvil LA, Horwath CC, McKenzie JE, and Lawson R. Validation of brief instruments to measure adult fruit and vegetable consumption. Appetite. 2011 Feb;56(1):111–7.
39
Thompson FE, Midthune D, Subar A, Kahle L, Schartzkin A, and Kipnis V. Performance of a short tool to assess dietary intakes of fruits and vegetables, percentage energy from fat and fibre. Public Health Nutr. 2004;7(8):1097–105.
40
Papadaki A and Scott JA. Relative validity and utility of a short food frequency questionnaire assessing the intakes of legumes on Scottish women. J Hum Nutr Diet. 2007;20:467–75.
41
Jessri M and L’Abbe MR. The time for an updated Canadian Food Guide has arrived. Appl Physiol Nutr Metab. 2015 Aug;40(8):854–7.
42
Thompson FE, Midthune D, Kahle L, and Dodd KW. Development and evaluation of the National Cancer Institute’s Dietary Screener Questionnaire scoring algorithms. J Nutr. 2017;147(6):1226–33.

Supplementary Material

File (cjdpr-2023-013suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Dietetic Practice and Research
Canadian Journal of Dietetic Practice and Research
Volume 85Number 1March 2024
Pages: 25 - 31
Editor: Naomi Cahill

History

Version of record online: 12 October 2023

Key Words

  1. dietary patterns
  2. web-based calculator
  3. Canadian population
  4. partial least squares
  5. diet quality
  6. short dietary assessment screeners

Mots-clés

  1. modèles alimentaires
  2. calculatrice Web
  3. population canadienne
  4. moindres carrés partiels
  5. qualité de l’alimentation
  6. outils d’évaluation de l’alimentation courts

Authors

Affiliations

Mahsa Jessri PhD
Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia
Centre for Health Services and Policy Research (CHSPR), Faculty of Medicine, The University of British Columbia
Adelia Jacobs RD
Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia
Alena (Praneet) NG MSc
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON
Carol Bennett MSc
Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON
Alison Quinlan MSc
Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia
Charlotte Nutt RD
Ottawa Hospital Bariatric Centre of Excellence, Ottawa, ON
Jennifer Brown MSc
Ottawa Hospital Bariatric Centre of Excellence, Ottawa, ON
Executive Member of the Dietitians of Canada Diabetes Obesity and Cardiovascular Disease Network
Deirdre Hennessy PhD
Health Analysis Division, Statistics Canada, Government of Canada, Ottawa, ON
Douglas G. Manuel MD
Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON
Health Analysis Division, Statistics Canada, Government of Canada, Ottawa, ON
School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON
Institute for Clinical Evaluative Sciences, Ottawa, ON
C.T. Lamont Primary Health Care Research Centre Program, Bruyère Research Institute, Ottawa, ON
Department of Family Medicine, University of Ottawa, Ottawa, ON

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Dietetic Practice and Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media