Social factors associated with changes in nutrition risk scores measured using SCREEN-8: data from the Canadian Longitudinal Study on Aging

Publication: Canadian Journal of Dietetic Practice and Research
3 June 2024

Abstract

Purpose: To examine the social network factors associated with changes in nutrition risk scores, measured by SCREEN-8, over three years, in community-dwelling Canadians aged 45 years and older, using data from the Canadian Longitudinal Study on Aging (CLSA).
Methods: Change in SCREEN-8 scores between the baseline and first follow-up waves of the CLSA was calculated by subtracting SCREEN-8 scores at follow-up from baseline scores. Multivariable linear regression was used to examine the factors associated with change in SCREEN-8 score.
Results: The mean SCREEN-8 score at baseline was 38.7 (SD = 6.4), and the mean SCREEN-8 score at follow-up was 37.9 (SD = 6.6). The mean change in SCREEN-8 score was −0.90 (SD = 5.99). Higher levels of social participation (participation in community activities) were associated with increases in SCREEN-8 scores between baseline and follow-up, three years later.
Conclusions: Dietitians should be aware that individuals with low levels of social participation may be at risk for having their nutritional status decrease over time and consideration should be given to screening them proactively for nutrition risk. Dietitians can develop and support programs aimed at combining food with social participation.

Résumé

Objectif. Examiner les facteurs propres au réseau social qui sont associés à des changements au score de risque nutritionnel mesuré sur une période de trois ans avec l’outil SCREEN-8 chez des Canadiens de 45 ans et plus vivant dans la communauté en utilisant les données de l’Étude longitudinale canadienne sur le vieillissement (ÉLCV).
Méthodes. Le changement aux scores SCREEN-8 entre le début de l’étude et les premières vagues de suivis de l’ÉLCV a été calculé en soustrayant les scores SCREEN-8 aux suivis des scores du début de l’étude. Une régression linéaire multivariable a été utilisée pour examiner les facteurs associés à des changements aux scores SCREEN-8.
Résultats. Le score SCREEN-8 moyen était de 38,7 (écart-type = 6,4) au début de l’étude et de 37,9 (écart-type = 6,6) au suivi. Le changement moyen au score SCREEN-8 était de −0,90 (écart-type = 5,99). Des niveaux plus élevés de participation sociale (participation à des activités communautaires) ont été associés à une hausse des scores SCREEN-8 entre le début de l’étude et le suivi, trois ans plus tard.
Conclusions. Les diététistes doivent savoir que les personnes ayant une faible participation sociale pourraient être susceptibles de connaître une dégradation de leur état nutritionnel au fil du temps et qu’un dépistage proactif du risque nutritionnel devrait être envisagé chez ces personnes. Les diététistes peuvent créer et soutenir des programmes visant à combiner l’alimentation à la participation sociale.

Get full access to this article

View all available purchase options and get full access to this article.

Disclaimer: The opinions expressed in this manuscript are the authors’ own and do not reflect the views of the Canadian Longitudinal Study on Aging.
Conflicts of interest: HK is past chair/co-chair of the Canadian Malnutrition Task Force (CMTF), currently leads the Primary Care working group at CMTF, and is the creator of the SCREEN-8 tool used in this research. CMM is a member of the Primary Care working group at CMTF. CD and VGD declare no conflicts of interest.

REFERENCES

1
Thompson Martin C, Kayser-Jones J, Stotts N, Porter C, and Froelicher ES. Nutritional risk and low weight in community-living older adults: a review of the literature (1995-2005). J Gerontol A Biol Sci Med Sci. 2006;61(9):927–934.
2
Keller HH. Promoting food intake in older adults living in the community: A review. Appl Physiol Nutr Metab. 2007;32(6):991–1000.
3
Ramage-Morin PL, Gilmour H, and Rotermann M. Nutritional risk, hospitalization and mortality among community-dwelling Canadians aged 65 or older. Health Rep. 2017;28(9):17–27.
4
Morrison JM, Laur C, and Keller HH. SCREEN III: working towards a condensed screening tool to detect nutrition risk in community-dwelling older adults using CLSA data. Eur J Clin Nutr. 2019;73(9):1260–1269.
5
Cederholm T, Jensen G, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition – A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle. 2019;10(1):207–217.
6
Keller HH and Østbye T. Nutritional risk and time to death; predictive validity of SCREEN (Seniors in the Community Risk Evaluation for Eating and Nutrition). J Nutr Health Aging. 2003;7(4):274–279.
7
Keller HH, Østbye T, and Goy R. Nutritional risk predicts quality of life in elderly community-living Canadians. J Gerontol. 2004;59A(1):68–74.
8
Favaro-Moreira NC, Krausch-Hofmann S, Matthys C, et al. Risk factors for malnutrition in older adults: A systematic review of the literature based on longitudinal data. Adv Nutr. 2016;7(3):507–522.
9
Ramage-Morin PL and Garriguet D. Nutritional risk among older Canadians. Health Rep. 2013;24(3):3–13.
10
Berkman LF, Glass T, Brissette I, and Seeman TE. From social integration to health: Durkheim in the new millennium. Soc Sci Med. 2000;51(6):843–857.
11
Vesnaver E and Keller HH. Social influences and eating behavior in later life: A review. J Nutr Gerontol Geriatr. 2011;30(1):2–23.
12
Bloom I, Lawrence W, Barker M, et al. What influences diet quality in older people? A qualitative study among community-dwelling older adults from the Hertfordshire Cohort Study, UK. Public Health Nutr. 2017;20(15):2685–2693.
13
Keller HH and McKenzie JDD. Nutritional risk in vulnerable community-living seniors. Can J Diet Pract Res. 2003;64(4):195–201.
14
Keller HH. Reliance on others for food-related activities of daily living. J Nutr Elder. 2005;25(1):43–59.
15
Kirkland S, Griffith LE, Menec V, et al. Mining a unique Canadian resource: The Canadian longitudinal study on aging. Can J Aging Rev Can Vieil. 2015;34(3):366–377.
16
Raina P, Wolfson C, Kirkland SA, et al. The Canadian longitudinal study on aging (CLSA). Can J Aging Rev Can Vieil. 2009;28(3):221–229.
17
Raina P, Wolfson C, Kirkland S, et al. Cohort profile: The Canadian Longitudinal Study on Aging (CLSA). Int Epidemiol Assoc Int J Epidemiol. 2019;48(6):1752–1753.
18
Raina P, Wolfson C, Kirkland S. Longitudinal Study on Aging (CLSA) Protocol Version 3.0. Published online 2008.
19
Harasemiw O, Newall N, Shooshtari S, Mackenzie C, and Menec V. From social integration to social isolation: The relationship between social network types and perceived availability of social support in a national sample of older Canadians. Res Aging. 2018;40(8):715–739.
20
Wister A, Cosco T, Mitchell B, Menec V, and Fyffe I. Development and concurrent validity of a composite social isolation index for older adults using the CLSA. Can J Aging Rev Can Vieil. 2019;38(2):180–192.
21
Newall NEG and Menec VH. A comparison of different definitions of social isolation using Canadian Longitudinal Study on Aging (CLSA) data. Ageing Soc. 2020;40(12):2671–2694.
22
Lin S (Lamson), Kobayashi K, Tong H, Davison KM, Arora SRA, and Fuller-Thomson E. Close relations matter: The association between depression and refugee status in the Canadian longitudinal study on aging (CLSA). J Immigr Minor Health. 2020;22(5):946–956.
23
Mills CM, Keller HH, DePaul VG, and Donnelly C. Social network factors affect nutrition risk in middle-aged and older adults: Results from the Canadian longitudinal study on aging. J Nutr Health Aging. 2023;27(1):46–58.
24
Sherbourne CD and Stewart AL. The MOS social support survey. Soc Sci Med. 1991;32(6):705–714.
25
McDowell I, McDowell I. Measuring health: A guide to rating scales and questionnaires. USA: Oxford University Press - OSO; 2006.
26
Mills CM, Keller HH, DePaul VG, and Donnelly C. Nutrition risk varies according to social network type: data from the Canadian Longitudinal Study on Aging. Fam Med Community Health. 2023;11(1):e002112.
27
Irwin M, Artin KH, and Oxman MN. Screening for depression in the older adult: Criterion validity of the 10-item Center for Epidemiological Studies Depression Scale (CES-D). Arch Intern Med. 1999;159(15):1701–1704.
28
Andresen EM, Malmgren JA, Carter WB, and Patrick DL. Screening for depression in well older adults: Evaluation of a short form of the CES-D. Am J Prev Med. 1994;10(2):77–84.
29
Fillenbaum GG. Screening the elderly. J Am Geriatr Soc. 1985;33(10):698–706.
30
Fillenbaum G. The Duke older Americans resources and services procedures. Multidimensional functional assessment of older adults. Hillsdale NJ: Lawrence Erlbaum; 1988.
31
Keller HH. SCREEN Tools. Older Adult Nutrition Screening [accessed 2022 Mar 29]. https://olderadultnutritionscreening.com/
32
Keller HH, Goy R, and Kane SL. Validity and reliability of SCREEN II (Seniors in the Community: Risk evaluation for eating and nutrition, Version II). Eur J Clin Nutr. 2005;59(10):1149–1157.
33
Canadian Longitudinal Study on Aging. Sampling and computation of response rates and sample weights for the tracking (telephone interview) participants and comprehensive participants. Canadian Longitudinal Study on Aging; 2011.
34
Khalilzadeh J and Tasci ADA. Large sample size, significance level, and the effect size: Solutions to perils of using big data for academic research. Tour Manag. 2017;62:89–96.
35
Buuren S van and Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67.
36
White IR, Royston P, and Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011;30(4):377–399.
37
Wulff JN and Ejlskov L. Multiple imputation by chained equations in praxis: Guidelines and review. Electron J Business Res Methods 2017;15(1):17.
38
Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc. 1988;83(404):1198–1202.
39
Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159.
40
Ferguson CJ. An effect size primer: A guide for clinicians and researchers. Prof Psychol Res Pract. 2009;40(5):532–538.
41
de Castro JM. Family and friends produce greater social facilitation of food intake than other companions. Physiol Behav. 1994;56(3):445–455.
42
Herman DR, Taylor Baer M, Adams E, et al. Life course perspective: Evidence for the role of nutrition. Matern Child Health J. 2014;18(2):450–461.
43
Locher JL, Sharkey JR. An ecological perspective on older adult eating behavior. In: Handbook of clinical nutrition and aging. Humana Press; 2009:3–17.
44
Locher JL, Ritchie CS, Roth DL, Baker PS, Bodner EV, and Allman RM. Social isolation, support, and capital and nutritional risk in an older sample: ethnic and gender differences. Soc Sci Med 1982. 2005;60(4):747–761.
45
Howe CJ, Cole SR, Lau B, Napravnik S, and Eron JJ. Selection bias due to loss to follow up in cohort studies. Epidemiol Camb Mass. 2016;27(1):91–97.
46
Kristman V, Manno M, and Côté P. Loss to follow-up in cohort studies: how much is too much? Eur J Epidemiol. 2004;19(8):751–760.
47
Keller HH and Trinca V. Determinants of a decline in a nutrition risk measure differ by baseline high nutrition risk status: targeting nutrition risk screening for frailty prevention in the Canadian Longitudinal Study on Aging (CLSA). Can J Public Health. March 22, 2023;114(4):593–612.

Supplementary Material

File (cjdpr-2024-014suppla.docx)

Information & Authors

Information

Published In

cover image Canadian Journal of Dietetic Practice and Research
Canadian Journal of Dietetic Practice and Research
Volume 85Number 2June 2024
Pages: 83 - 90
Editor: Naomi Cahill

History

Version of record online: 3 June 2024

Key Words

  1. CLSA
  2. older adults
  3. midlife
  4. nutrition risk
  5. nutritional risk
  6. malnutrition risk

Mots-clés

  1. ÉLCV
  2. aînés
  3. milieu de vie
  4. risque nutritionnel
  5. risque de malnutrition

Authors

Affiliations

Christine Marie Mills RD, MPH, PhD
Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON
Heather Keller RD, PhD, FDC, FCAHS
Schlegel-UW Research Institute for Aging, and Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON
Vincent G. DePaul PT, PhD
School of Rehabilitation Therapy and Health Services and Policy Research Institute, Queen’s University, Kingston, ON
Catherine Donnelly OT, PhD
School of Rehabilitation Therapy and Health Services and Policy Research Institute, Queen’s University, Kingston, ON

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Dietetic Practice and Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media