How Many Participants Are Needed? Strategies for Calculating Sample Size in Nutrition Research

Publication: Canadian Journal of Dietetic Practice and Research
6 December 2024

Abstract

Sample size estimation is a critical aspect of nutrition research methodology, yet it remains frequently overlooked, leading to underpowered studies and potentially inaccurate conclusions. This review addresses this gap by providing comprehensive guidance on how to calculate sample size in nutrition research. Emphasizing the importance of an a priori sample size calculation, the review outlines the key considerations, including the desired levels of significance and power, effect size estimation, and standard deviation assessment. Formulas for determining sample size for various comparisons, including two proportions, two means, three or more groups, and unevenly sized groups, are provided, along with strategies for addressing loss to follow-up. Hypothetical examples illustrate these formulas’ application across different research scenarios, highlighting their practical value in ensuring study robustness. Additionally, the review discusses common pitfalls in sample size estimation, such as misjudging effect size or standard deviation, and emphasizes the need for transparent reporting of sample size calculations to enable accurate interpretation of study findings. This article is a resource for nutrition researchers, offering guidance on conducting appropriate sample size calculations to bolster methodological rigor and study reliability. By embracing the principles outlined herein, researchers can elevate the quality of nutrition research.

Résumé

L’estimation de la taille de l’échantillon est un aspect critique de la méthodologie de la recherche en nutrition. Pourtant, elle est souvent négligée, ce qui mène à des études peu puissantes et à des conclusions potentiellement inexactes. Cette revue se penche sur cette lacune en expliquant de manière exhaustive comment calculer la taille de l’échantillon dans la recherche en nutrition. Soulignant l’importance d’un calcul a priori de la taille de l’échantillon, la revue décrit les considérations clés, y compris les niveaux souhaités de signification et de puissance, l’estimation de la taille de l’effet et l’évaluation de l’écart-type. De plus, des formules permettant de déterminer la taille de l’échantillon aux fins de diverses comparaisons, notamment deux proportions, deux moyennes, trois groupes ou plus et des groupes de taille inégale, sont fournies, ainsi que des stratégies pour gérer la perte de suivi. Des exemples hypothétiques illustrent l’application de ces formules dans différents scénarios de recherche, soulignant leur valeur pratique pour assurer la robustesse des études. De plus, la revue aborde les pièges courants de l’estimation de la taille de l’échantillon, tels que l’évaluation erronée de la taille de l’effet ou de l’écart-type, et souligne la nécessité d’une déclaration transparente des calculs de la taille de l’échantillon pour permettre une interprétation précise des résultats des études. Cet article est une ressource pour les chercheurs en nutrition et explique comment calculer la taille de l’échantillon en vue d’améliorer la rigueur méthodologique et la fiabilité des études. En adoptant les principes décrits, les chercheurs peuvent améliorer la qualité de la recherche en nutrition.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES

1
Boushey CJ, Harris J, Bruemmer B, and Archer SL. Publishing nutrition research: a review of sampling, sample size, statistical analysis, and other key elements of manuscript preparation, Part 2. J Am Diet Assoc. 2008 Apr;108(4):679–88.
2
Schaafsma H, Laasanen H, Twynstra J, and Seabrook JA. A review of statistical reporting in dietetics research (2010-2019): how is a Canadian journal doing? Can J Diet Pract Res. 2021 Jun 1;82(2):59–67.
3
Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013 May;14(5):365–76.
4
Das S, Mitra K, and Mandal M. Sample size calculation: basic principles. Indian J Anaesth. 2016 Sep;60(9):652–6.
5
Hickey GL, Grant SW, Dunning J, and Siepe M. Statistical primer: sample size and power calculations-why, when and how? Eur J Cardiothorac Surg. 2018 Jul 1;54(1):4–9.
6
Peterson SJ and Foley S. Clinician’s guide to understanding effect size, alpha level, power, and sample size. Nutr Clin Pract. 2021 Jun;36(3):598–605.
7
Pourhoseingholi MA, Vahedi M, and Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol Hepatol Bed Bench. 2013 Winter;6(1):14–7.
8
Ritz C, Olsen MF, Grenov B, and Friis H. Sample size calculations for continuous outcomes in clinical nutrition. Eur J Clin Nutr. 2022 Dec;76(12):1682–89.
9
Whitley E and Ball J. Statistics review 4: sample size calculations. Crit Care. 2002 Aug;6(4):335–41.
10
Kirby A, Gebski V, and Keech AC. Determining the sample size in a clinical trial. Med J Aust. 2002 Sep 2;177(5):256–7.
11
Schmidt SAJ, Lo S, and Hollestein LM. Research techniques made simple: sample size estimation and power calculation. J Invest Dermatol. 2018 Aug;138(8):1678–82.
12
Baguley T. Understanding statistical power in the context of applied research. Appl Ergon. 2004 Mar;35(2):73–80.
13
Kadam P and Bhalerao S. Sample size calculation. Int J Ayurveda Res. 2010 Jan;1(1):55–7.
14
Fitzmaurice G. Sample size and power: how big is big enough? Nutrition. 2002 Mar;18(3):289–90.
15
Dibao-Dina C, Caille A, Sautenet B, Chazelle E, and Giraudeau B. Rationale for unequal randomization in clinical trials is rarely reported: a systematic review. J Clin Epidemiol. 2014 Oct;67(10):1070–5.
16
Khan MS, Khan MS, Ansari ZN, Siddiqi TJ, Khan SU, Riaz IB, et al. Prevalence of multiplicity and appropriate adjustments among cardiovascular randomized clinical trials published in major medical journals. JAMA Netw Open. 2020 Apr 1;3(4):e203082.
17
Li G, Taljaard M, Van den Heuvel ER, Levine MA, Cook DJ, Wells GA, et al. An introduction to multiplicity issues in clinical trials: the what, why, when and how. Int J Epidemiol. 2017 Apr 1;46(2):746–55.
18
Vickerstaff V, Omar RZ, and Ambler G. Methods to adjust for multiple comparisons in the analysis and sample size calculation of randomised controlled trials with multiple primary outcomes. BMC Med Res Methodol. 2019 Jun 21;19(1):129.
19
Anderson SF. Best (but oft forgotten) practices: sample size planning for powerful studies. Am J Clin Nutr. 2019 Aug 1;110(2):280–95.
20
Franz MJ, Boucher JL, Rutten-Ramos S, and VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015 Sep;115(9):1447–63.
21
Summers MJ, Chapple LA, McClave SA, and Deane AM. Event-rate and delta inflation when evaluating mortality as a primary outcome from randomized controlled trials of nutritional interventions during critical illness: a systematic review. Am J Clin Nutr. 2016 Apr;103(4):1083–90.
22
Chen H, Zhang N, Lu X, and Chen S. Caution regarding the choice of standard deviations to guide sample size calculations in clinical trials. Clin Trials. 2013 Aug;10(4):522–9.
23
Akl EA, Briel M, You JJ, Sun X, Johnston BC, Busse JW, et al. Potential impact on estimated treatment effects of information lost to follow-up in randomised controlled trials (LOST-IT): systematic review. BMJ. 2012 May 18;344:e2809.
24
Charles P, Giraudeau B, Dechartres A, Baron G, and Ravaud P. Reporting of sample size calculation in randomised controlled trials: review. BMJ. 2009 May 12;338:b1732.
25
Lakens D. Sample size justification. Collabra: Psychol. 2022 Mar 22;8(1):33267.
26
Hoenig JM and Heisey DM. The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Statis. 2001 Feb 1;55(1):19–24.

Information & Authors

Information

Published In

cover image Canadian Journal of Dietetic Practice and Research
Canadian Journal of Dietetic Practice and Research
e-First
Pages: 1 - 5
Editor: Naomi Cahill

History

Version of record online: 6 December 2024

Key Words

  1. Sample size
  2. power calculation
  3. effect size
  4. statistics
  5. ethics
  6. hypothesis
  7. significance
  8. primary outcome
  9. nutrition

Mots-clés

  1. Taille de l’échantillon
  2. calcul de puissance
  3. taille de l’effet
  4. statistiques
  5. éthique
  6. hypothèse
  7. signification
  8. résultat principal
  9. nutrition

Authors

Affiliations

Jamie A. Seabrook PhD
Department of Epidemiology and Biostatistics, Western University, London, ON
Lawson Health Research Institute, London, ON
Brescia School of Food and Nutritional Sciences, Western University, London, ON
Department of Paediatrics, Western University, London, ON
Children’s Health Research Institute, London, ON

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Dietetic Practice and Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Tables

Media

Share Options

Share

Share the article link

Share on social media